Low Cost Management of Replicated Data in
Fault-Tolerant Distributed Systems

THOMAS A. JOSEPH and KENNETH P. BIRMAN
Comell University

Many distributed systems replicate data for fauit tolerance or availability. [n such systems, a logical
update on a data item results in a physical update on a number of copies. The synchronization and
communication required to keep the copies of replicated data consistent introduce a delay when
operations are performed. [n this paper, we describe a technique that relaxes the usual degree of
synchronization. permitting replicated data items to be updated concurrently with other operations,
while at the same time ensuring that correctness is not vioiated. The additional concurrency thus
obtained resuits in better response time when performing operations on replicated data. We also
discuss how this technique performs in conjunction with a roll-back and a roll-forward failure recovery
mechanism.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systema—distributed applications; distributed databases; C.4 (Computer Systems Organization|:
Performance of Systems—reliability, availability, and serviceabilitv. D 4.1 [Operating Systems|:
Process Management—concurrency: synchronization; D.4.5 {Operating Systems]: Reliability—
checkpoint/restart; fauit-tolerance: H.2.2 [Database Management|: Physical Design—recovery and
restart; H.2.4 ([Database Management]: Systems—transaction processing.

General Terms: Reliability

Additional Key Words and Phrases: Replicated data, concurrent update, piggybacked update, roll-
forward recovery.

1. INTRODUCTION

The advent of distributed computing systems has added a new aspect to fault
tolerance. A distributed system consists of a number of processing units (sites)
connected by a communications network and fault tolerance can hence be
achieved by replicating information at multiple sites. This, however, usually
entails a substantial performance degradation, because the sites must coordinate
and synchronize their actions to ensure the consistency and correctness of
replicated information. The associated overhead manifests itself as poorer re-
sponse time. In certain situations, an application may not be able to tolerate this
delay, and in any case, it is usually desirable to improve responsiveness to the

This work was supported by the Defense Advanced Research Projects Agency (DoD) under ARPA
order 5378, Contract MDA-903-85-C-0124. The views, opinions, and findings contained herein are
those of the authors and should not be construed as an official DoD position, policy, or decision. This
work was also supported in part by a grant from the Sperry Corporation.

Authors’ address: Department of Computer Science, Corneil University, [thaca, NY 14853.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appesr, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

& 1988 ACM 0734-2071/86/0200-0054 $00.75

ACM Transactions on Computar Systems, Vol. 4, No. 1, February 1968, Pages 54-70.

(NASA=LR-135270) L0A LTST MANACCMeNT Lf NTU=2P T
AOPLLICATOD NaTa I FAULT-ToLoRAMT
LISTAT UTTL 5YsTes {(Cornell unive) 110

LAl 099 unclas
Ns/nl O21IN0LTT

Low-Cost Management of Replicated Data . 58

extent possible. In this paper, we present a technique that reduces, and sometimes
eliminates, the latency arising from replication. It works by relaxing the level of
synchronization usually employed to maintain the consistency of replicated data,
while at the same time ensuring that this consistency is not compromised. In a
system where the cost of managing replicated data is dominant, the additional
concurrency thus obtained will result in better response time.

The technique we describe is applicable to distributed computer systems that
are asynchronous in nature, that is, they coordinate their actions by sending
messages to one another and do not use a “global clock” for synchronization. We
assume that the communication medium is reliable, and that processors are fail-
stop [15]: the only failure they suffer is a halting failure—they stop processing,
and the other sites are informed of their failure'. No information stored at a site
survives a failure. Although we describe the method with respect to replicated
databases, it is applicable to more general replicated systems. The generalization
to object-based distributed systems is described in [11).

In the next section, we describe our model for replicated systems. It is similar
to the model for replicated databases in [2]. In Section 3, we examine the concept
of “order” as applied to an asynchronous system, and draw some conclusions
about the message patterns in such systems. We next describe how replication
introduces delays in performing operations. In Section 5, we present an algorithm
that could be used to eliminate some of the latency caused by replication, but
which is unsatisfactory because it generates unnecessarily heavy message traffic.
The algorithm of Section 5 is then modified to form the basis of a method to
increase concurrency and thus improve response time. Sections 7 and 8 discuss
how this scheme performs in the presence of site failures. An implementation of
this method and its performance are described in the next section, and Sections
10 and 11 conclude the paper.

2. MODEL

A replicated system is modeled by a collection of replicated data items that are
accessed by logical operations. A replicated data item is one that is stored
redundantly at multiple sites’. The operations that can be performed on a
replicated data item are read, which returns its value, and write, which changes
its value.® Although each copy of a data item can be read or written independently,
a user has the view that only a single copy exists. A logical operation issued at a
site is implemented by executing a physical operation on one or more copies of
the data item in question. For now, we assume that a copy always exists at a site
where a logical read is issued, and that it is implemented by a physical read of
that copy. Hence, we do not distinguish between a logical read and the physical
read that implements it—both terms refer to the same operation. A logical write,

' This abstraction can be implemented on top of an unreliable communication medium by an
appropriats software layer.

 The work in this paper is equally valid if the term site is interpreted as process at a site, provided
processes do not share memory, and communicate only by sending messages to one another.

? Write operations are not limited to operations that overwrite the value of a date item with a new
one. They may include such operations as incrementing a data item, inserting an element in a data
item that represents a queue, etc.

ACM Transactions on Computer Systems. Vol. 4, No. 1, February 1986

56 + T.A Joseph and K. P. Birman

on the other hand, results in an update instruction being sent to each of the
copies, and physical writes occur on all of them.

High level operations are modeled by transactions, which perform operations
on different data items in a certain order. A transaction T is modeled by a tuple
(OPr, <r), where OP+ is a set of logical operations and <r is a partial order on
them. The partial order <r embodies the data flow relationships between the
operations in OPr, and a correct execution of T must observe this order. A logical
read (write) operation on data item x by transaction T is represented as
R(x, T, s) (resp. W(x, T, s)), where s is the site at which the operation is issued.
We use the notation O(x, T, s) to represent an arbitrary read or write operation,
and use R, W, or O when the context is clear. If a transaction has more than
one read (write) on the same data item, the ith read (write) is denoted as R'
(resp. W*).

When transactions are run concurrently, the execution of operations from
different transactions may be interleaved. A correct execution should respect the
partial order <r, for each transaction T'.. In addition, the execution should be
seriglizable, that is, its effect should be the same as if the transactions were
executed independently in some serial order. A concurrency control algorithm is
used to ensure that all executions are serializable. A number of such algorithms
are known and are discussed in [1, 3, 12, 14]. Here we assume that a conflict-
based algorithm is in use, although the results can be extended to other kinds of
algorithms. Two logical operations conflict if they both operats on the same data
item and at least one of them is a write. A conflict-based algorithm works by
ordering conflicting operations in such a way that only serializable executions
are produced. The mechanisms used to order operations depend on the degree of
synchronization available in the system. In the next section, we discuss the
concept of “order” as it relates to an asynchronous system. The details of the
particular algorithm used are not essential to our treatment.

Formally, the concurrent execution of a set of transactions T, T3, ---, T,
gives rise to a logical log L = (OP,, <.). OP,, is the union of OPr, for all i, and
<, is a partial order on the operations in OP,, representing the order in which
they are executed. If 0, <, O,, we say that O, is scheduled after O,. L is correct
if Vi: <, 2 <r,, and if there exists a total order <, called a serialization order,
on the set [T, Ta, ---, T.] such that if an operation O, in transaction T,
conflicts with an operation O, in T, and if T, <g T,, then O, <, O,.

Given a correct logical log L, we say that a write operation W writes before an
operation O on the same data item, if O is scheduled after W and there is no
other write operation W’ on the same data item scheduled after W but before O.
If O is a read operation, it means that O reads the value written by W. In other
words, W(x, T.,, s) writes before O(x, T, t) if W(x, T,, s) and O(x, T, t) belong
to OP,, W(x, T., s) <, O(x, T», t), and there is no W(x, T, v) such that
Wz, T, 8) <, W(x, T, v) <, O(x, T}, t).

In Figure 1, we show three transactions, T,, T,, and T, and a correct logical
log L for these transactions. There are three sites s, ¢, and v in the system, and
the data items z, y, and z each reside at all the sites. The partiai order <, is the
transitive closure of the relations shown in the figure. A serialization order S
corresponding to L is T, <, T. <, T.. W(x, T., v) writes before R(x, T,, s).
W(y, T., v) writes before R(y, T,,), and W(z, T,, t) writes before W(x, T, v).

ACM Transactions on Computer Systams, Vol. 4, No. 1. February 1986

Low-Cost Management of Replicated Data . 57

R, Ty 09
- \\ <-
a <',‘ YT g8 . RUx Ta, 1) —— « 7 !
Uy, Ty s) /
/ Nix, 7.,)
Te R(2,T.) \<-:
V'J{y, l.:. 'I)
<, <,
... -~ 3y, Ti,i)"R(l,T‘, s) = Wiz, Tes) Sites
<. y
R(l, TO‘ t) - ‘N(X, fb‘ :) ... C e el S!ZE(

R(z, Te, v) =Wy, T, v)/-' Wi(x, T, v)

Fig. 1. Three transactions and a correct logical log.

3. ORDER IN AN ASYNCHRONOUS SYSTEM

A logical log depicts a temporal order between executions of logical operations.
As Lamport has observed [13), the only temporal order that is meaningful
between events at different sites in a distributed asynchronous system is one
based on the messages sent between them. Events that occur at a single site are
ordered in time in the normal way. The act of sending a message from one site
precedes the receipt of the same message at another. Any two events that are not
(transitively) related to each other in one of these two ways are said to be
concurrent, that is, there is no temporal order between them. Informally, an
event g at a site s is ordered temporally after an event b at site ¢ if, and only if,
there is a sequence of messages, the first one originating from site ¢ after the
event b, the next message being sent from the destination site of the first message
after the first message is received there, and so on, with the last message being
received at site s before the event a. If there is no such “path” of messages from
btoa, bcan not causally affect a, and the two events are not temporally ordered.
In particular, for a concurrency control algorithm to enforce an order between
logical operations at different sites, it must cause synchronization messages to be
sent between the sites. This is reflected in the physical log.

A physical log P, for a logical log L is a record of all logical and physical
operations carried out at each site, together with message transmissions between
sites. It consists of a set of actions, where an action is the execution of a logical
or a physical operation, or the sending or receipt of a message. Additionally, it
records the order in which actions are carried out. We use upper case letters to
represent logical operations and lower case for physical operations. Thus, a
physical write operation at site ¢ resulting from a logical operation W(x, T, s) is

ACM Transactions on Computar Systems, Vol. 4, No. 1, February 1986

58 - T. A JosephandK. P.Birman

denoted w(x, Ty, t). R(x, T,, s) and r(x, T,, s) refer to the same action—the read
operation on x. We use the notation send(m) (receive(m)) for the action corre-
sponding to sending (receiving) message m, and the notation sender(m)
(receiver(m)) to denote the site from (at) which m is sent (received).

Every physical log P, induces a temporal order —, on its actions. As in [13],
this is defined as the transitive closure of the following relations:

(1) If a and b are two actions at the same site, and a occurs before b, g —, b.
(2) If a is send(m), and b is receive(m), g —, b.

A physical log P, represents the impiementation of the behavior described in
a logical log L. Thus for a physical execution to be correct, the physical log must
contain all the orderings that are in the logical log. Since —; contains all possible
temporal orderings between actions in P,, it follows that —; 2 <,. Also note
that —; is consistent with (global) real time, that is, if ¢ —; b, then a occurs
before b in real time (but not necessarily vice versa). This implies that —, is
acyclic, otherwise it would mean that an event could occur before itself in real
time.

Observation. A message path is said to exist from an action a at site s
to an action b at site ¢ if the physical log contains a sequence of messages
m, my, ---, my (n 2 0) such that sender(m;,) = s, a— send(m,),
receiver(m;) = sender(m,.,), receive(m;) —, send(m,.,), receiver(m,) = ¢, and
receive(m,) — b. (If s = ¢, then n = 0 and the path is empty.) Observe that it
follows from the definition of —, that @ — b if, and only if, there is a message
path from a to b.

THEOREM. For any correct logical log L that contains two operations
Wi(x, T,, s) and O(x, T, t), such that W(x, T,, s) writes before O(x, Ts, t), the
physical log P, contains a message path from W(x, T, s) to O(x, T, t).

Proor. Since W(zx, T,, s) writes before O(x, T, t), W(x, T,, s) <. O(x, T}, t).
Because —; 2 <., W(x, T,, s} = O(x, T, t). The result follows from the
observation above.

4. DELAY INTRODUCED BY REPLICATION

If an operation W writes before an operation O in a nonreplicated system, the
value of the data item at the time O is executed is always the value written by
W. In a replicated system, if W(x, T,, s) writes before O(x, T,, ¢t), the system
must provide the same effect as if r were nonreplicated [1]. In the simplest
implementation of logical writes, the value to be written is broadcast to all sites
where a copy of the data item resides. A physical write occurs at those sites, and
then a confirmation message is returned to the site where the logical write was
issued. Only then is the logical write considered completed. This solution is
unsatisfactory because every write operation entails waiting for responses before
the operation after the write can proceed. Figure 2 depicts this latency.

We present an implementation of logical writes that permits an operation after
a write to proceed as soon as possible, with the physical writes being performed
concurrently at the other sites. We do this in two stages. First, we describe an

ACM Transactions on Computer Systems, Vol. 4, No. 1, February 1988

Low-Cost Management of Replicated Data . 59

begins . 8ngs

/—\ 43{&”(’/

R(x. Ty, 5) = N(x, Ty 50 = Ry, T3, 81 = commits

Sites «
pPRysicarly
wrItes & .
. " . " ’-me -
wNrite x ate “ack “Tsisdone”
Sicen
anysically writes « Rix, Ty, t)

Fig. 2. Latency resulting from distributed write.

algorithm that piggybacks update instructions on messages used by the concur-
rency control algorithm for synchronization. Then, the algorithm is modified to
permit updates to be broadcast concurrently. This gives the desired resuit.

5. PIGGYBACKED UPDATE

Piggybacked update is an implementation of logical writes that relaxes the level
of synchronization by deferring physical write operations until their resuits are
actually needed. A logical write is considered completed when the required update
instructions are generated (but not necessarily sent). This eliminates the latency
described in the last section. An added advantage is that update instructions are
all piggybacked on messages required for concurrency control. This reduces the
message traffic in the system.

If W(x, T,, s) writes before O(x, Ty, t), the physical writes for W can be
deferred, provided that w is carried out before o everywhere, and that no other
physical write w’ occurs between w and o. Consider the update instruction that
must travel from site s to site ¢, where a physical write w must occur. The
theorem in Section 3 shows that there is always a sequence of synchronization
messages upon which this update instruction can be piggybacked such that it will
arrive at ¢ before O is performed. The implication is that it is never necessary to
perform a broadcast to distribute updates; they can all be piggybacked upon
synchronization messages. This motivates the piggybacked update algorithm
shown in Figure 3 and described below. :

The piggybacked update algorithm assumes that a concurrency control algo-
rithm is in operation, which imposes an order on the execution of logical
operations by sending synchronization messages between sites.' Copies of the
update instructions resulting from a logical write at a site s are piggybacked on
all synchronization messages that are subsequently sent from s. By the theorem,
the update instructions will arrive at their destinations before the execution of
any operation that depends on it. The algorithm requires that each site s maintain
a buffer Outgoing, of outgoing update instructions. Outgoing, contains update

‘It is convenient to think of operations is at the same site as being ordered by synchronization
messages sent from the site to itself, though this need not be actually implemented.

ACM Transactions on Computer Systems, Vol. 4. No. 1, February 1966

60 « T.A. Joseph and K. P. Biman

Whenever a synchronization message m is being sent from site s to site t:

— Piggyback on m a copy of all update instructions in Outgoing,, in order.
— Piggyback the values of LastSeen, and TheirView,.

When a synchronization message is received from site ¢:

— For each site v, accept all piggybacked update instructions originating from v whose timestamps
are greater than LastSeen,[v), and set the value of LastSeen,[v] to the largest such timestamp.

— Process, in order, ail updates pertaining to copies of data items at s, and append all other update
instructions to Outgoing,, preserving their order.

— Set the values of TheirView,[t][v] to the piggybacked values of LastSeen,(u].

— Set the value of TheirView,[v|{w] to the larger of Their View,[v][w] and the piggybacked value of
TheirView, [v){w).

— Deiete from Outgoing, ail updates from site w to site v with timestamps smaller than or equal to
TheirView,[w]{v].

Figure 3: Piggybacked update aigorithm, as followed by site .

instructions from site s to other sites, as well as updates® that pass through site
s en route to other sites. Updates in Outgoing, are ordered according to the time
they are first received by site s. Copies of update instructions remain in Outgoing,,
and continue to be piggybacked on outgoing synchronization messages, until site
s learns that the destination has already received a copy. If multiple copies of an
update arrive at a site, all copies except the first are ignored.

To detect whether a copy of an update has reached its destination and to
identify and ignore duplicate copies of the same update, each logical write
operation is given a timestamp. Timestamps have the property that if Wand W’
are two logical writes at the same site, and if W <, W’, then the timestamp of
W’ is strictly greater than that of W. The timestamp of a logical write, with the
site name appended, is called its operation-ID. Note that timestamps and oper-
ation-[D’s can be generated locally at each site. Each update instruction carries
the timestamp of the logical write it corresponds to. It follows from the way in
which-updates are piggybacked that if an update from a site v arrives at a site s
by some path of synchronization messages, then all updates from v to s with
smaller timestamps must have already arrived at s. They, too, wouid have been
piggybacked on the same message path, uniess they had already reached s by
another path.

At each site s, the array element LastSeen,[v] records the value of the largest
timestamp that site s has observed on updates resulting from a logical write at v.
It ignores any update originating from v that carries a smaller timestamp, because
it must have already received a copy. Additionally, Their View,[v}{w] records the
value of LastSeen,[w] at the time of the last message that site v sent to site s.
Site s deletes from Outgoing, any update from w to v carrying a smaller timestamp
than Their View,[v}{w], because v must have already received a copy of it.

We now show that the algorithm is correct. We need to show that if
W(x, T., s) writes before O(x, T, t), then all physical writes w occur before
the physical operation o at that site. (If O is a read, this happens only at site ¢.)
We must also show that no other physical write w’ corresponding to, say
W’(x, T., v) occurs between w and o.

* We use the term update to mean update instruction.
ACM Transactions on Computer Systems, Vol. 4, No. 1. February 1986

Low-Cost Management of Replicated Data . 61

Rix, Ty, s) = W(x, T, 6) = Ry, Ty, 50 = commurs

Sitas 1y
Anysicaliy writes ¢
. .
"3 sdone Time —
(oiggyoackeq \ ‘atency
“oadate of x)
St

snysicaily Rix, Tw, 2)
writes « Co

Fig. 4. Reduction in latency using piggybacked update.

Because there is always a message path from W to O (Theorem, Section 3),
the algorithm guarantees that a copy of the update instruction for W will arrive
at site ¢ before O is executed. If O is a read, this is sufficient to ensure that w
occurs before o. If O is a write, the update instruction for W will be piggybacked
on any message that carries the update for 0,% and will be ordered before the
update for O. This means that w will be performed before o at any site where o
is performed.

To show that w’ will not occur between w and o, note that W and W" conflict,
so it follows from the definition of serializability that they must be ordered
relative to each other. Thus either W’ <, W or W <, W, depending on the
serialization order. In the first case, there is a message path from W’ to W, and
a copy of the update instruction for W’ will arrive at ¢ before W is executed.
Hence, the update instruction for W’ will be piggybacked on any message carrying
the update for W, and ordered before it. As a result, w’ will be performed before
w, and not between w and o.

The second case (W <, W’) is proved as follows. O and W’ conflict, so
0<, W’ or W’ <, 0. Since W writes before O and W<, W’, the only possibility
is that O <, W’. If O is a write operation, the same argument as above shows
that any physical write o occurs before w’. If O is a read operation, note that
0 <, W’ implies that there is a message path from O to W’. There is a message
path from W’ to w’, along which the update instruction travels. Now if w’ were
to occur before the physical read o, there would be a cycle in the physical log,
which is impossible. (In this case O and o represent the same event.) Thus w’
does not occur between w and o.

We have shown that the piggybacked update algorithm results in an imple-
mentation in which physical operations respect all the dependencies between
logical operations. It does not require that physical writes on different copies of
the same item be synchronized, and thus reduces the latency associated with
executing a logical write operation. It does not depend on the actual details of
the concurrency control algorithm, provided that some mechanism is used to
order conflicting operations. In Figure 4, we show how the latency depicted in
Figure 2 is reduced by piggybacked update.

The algorithm has the obvious disadvantage that update instructions are
piggybacked on message paths that might never lead to the required destination,
hence requiring unnecessarily large messages and buffers. Some of this overhead

* This is true uniess a copy of the update instruction for W has already been received at its destination,
in which case w will have already been performed before o.

ACM Transactions on Computer Systems, Vol. 4, No. 1, February 1988

62 . T. A. Joseph and K. P. Biman

could be eliminated if the concurrency control algorithm indicates which data
items a particular synchronization message refers to. For example, with a lock-
based concurrency control algorithm, the data items corresponding to a lock
acquisition or release message are always known. In this case, update instructions
for a data item could be piggybacked only on those synchronization messages
that refer to it. Another obvious optimization is to not piggyback on a message
to site ¢ those updates in Outgoing, that have already been piggybacked on an
earlier message to ¢. The buffer size can also be controlled by periodically
broadcasting LastSeen, to other sites, enabling them to discard copies of updates
that have already reached their destinations.

In many distributed systems the number of messages sent, and not their size,
is an overriding cost factor. This is the case, for example, if messages are processed
by a large number of software layers. In such a system, piggybacking would
improve performance. However, as seen in Figure 4, piggybacked update could
cause a large number of updates to be delivered at a site when a synchronization
message arrives there. As a result, an operation that might have been waiting for
a synchronization message to arrive suffers an additional delay while all the
updates are processed. Note that this is a different kind of latency from the
latency described earlier, as it does not involve waiting for messages to be sent
and acknowledged, but is instead a wait for local processing to take place. The
time for such local operations is usually much lower in magnitude than that for
message transmissions. Moreover, this latency is not incurred unless there is an
operation that is actually blocked, waiting for a write to be performed. However,
even this latency can be avoided using concurrent update, which employs the
piggybacked update algorithm as its basis.

6. CONCURRENT UPDATE

In the concurrent update scheme the piggybacking of operation-ID’s is decoupled
from the transmission of actual data. Operation-ID’s are piggybacked on syn-
chronization messages exactly as above, but update instructions are transmitted
directly to destination sites, concurrently with ongoing operations. Such trans-
missions are done using atomic broadcasts, and are subject to a broadcast ordering
rule.

An atomic broadcast has the following properties:

(1) The data broadcast are either received at all the destination sites or at
none of them, even in the presence of site failures. Moreover, if broadcast B, is
sent before broadcast B, by the same site s, then if B, is received (anywhere), B,
is received by its destinations as well.

(2) If two atomic broadcasts made from the same site have destinations in
common, the data are received at overlapping destinations in the same order that
the broadcasts were initiated.

(3) If the data from an atomic broadcast B, are received at a site s before an
atomic broadcast B, is initiated at s, then the data from B, are received before
the data from B; at any overlapping destinations.

A number of protocols have been proposed for implementing broadcasts with
these and similar properties (8, 16). In [5], we describe a communiation subsystem

ACM Transactions on Computer Systems, Vol. 4, No. 1, February 1988

Low-Cost Management of Replicated Data . 63

in which this atomic broadcast is available as a primitive operation. Atomic
broadcasts are included in a physical log in the same way as send events. We yse
the notation AtBcast(W) to represent the event corresponding to the initiation
of an atomic broadcast for the update instructions of logical write W.

In the concurrent update scheme, a logical write Wi(x, T,, s) is considered
completed once the physical write w(x, T, s) is performed. The atomic broadcast
to update the other copies of x may be initiated after an arbitrary amount of
time, but must follow a broadcast ordering rule, which requires that if two
conflicting logical writes are performed at the same site, then their atomic
broadcasts are initiated in the same order that the logical writes were performed.
In other words, if W, = W(x, T,, s) and Wy = W(x, T,, s), and if W, <, W,,
then AtBcast(W,) —, AtBcast(W,). Physical writes are performed in the order
in which atomic broadcasts are received at a site.

The execution of logical operations is governed by a blocking rule. The piggy-
backing of operation-ID's ensures that if a write operation Wi(x, T,, s) is
scheduled before an operation O(x, T, ¢t), then W's operation-ID is received at ¢
before O is performed. However, the update instruction for W may not have
arrived, because AtBcast(W) can be deferred arbitrarily. The blocking rule
requires that, in such a situation, the execution of O be blocked until the update
instruction arrives, and the update is performed.’

The blocking rule ensures that if W(zx, T.,, s) writes before O(x, T, t), then
the physical write w(x, T, t) is performed before O. If O is a read, this means
that w occurs before o. If O is a write, property (3) of atomic broadcasts ensures
that the update instructions for W will be received everywhere before those for
O. Hence, w will be performed before o at all sites at which a copy of x resides.
As with the piggybacked update scheme, we also need to show that no other
Physical write w’ (corresponding to logical write W’) will be performed between
w and o. As before, we have two cases: W’ <, Wor W <, O0< W,

If W <, Wand W’ and W occur at the same site s, then the broadcast
ordering rule requires that the atomic broadcast for W’ be initiated before the
broadcast for W. It follows from property (2) of atomic broadcasts that the
update instructions for W’ will be received everywhere before those for W.
Hence, w’ will occur before w and not between w and o. If W’ and W occur at
different sites, the piggybacked operation-ID for W' will be received at s before
W is performed there. The blocking rule would cause W to wait until the update
instruction for W’ is received at s. Only then will the atomic broadcast for W be
initiated. Property (3) of atomic broadcasts implies that the update instructions
for W’ will be received before those for W at any site where a copy of x exists.
Hence, w’ will be performed before w.

The second case arises if W <, O <, W’. If O is a write operation, and since
0 <, W', a similar argument to the one above can be used to show that o occurs
before w’. If O is a read operation, the same argument as for piggybacked update
shows that if w’ were to occur before o, there would have to be a cycle in the

" An optimization is possible if O is a write operation that overwrites the value of x with a new value.
In this case, O need not be blocked, and the update instruction for W is ignored when it arrives. This
can be done by maintaining a list of operation-1D’s of updates that must be ignored.

ACM Transactions on Computer Systems, Voi. 4. No. 1, February 1988

64 . T. A. Joseph and K. P. Birman

Rix, Ty, 8) = Wix, Ty 5) = Ry, Ty, 8) = commurs
Sices «y

nysicaliy writes x

. Tme =
“write x att "Ts -sdone’

Siet e
onyticaily writes 2 — R(x, Ty,)
(checks far compietron)

Fig. 5. Concurrent update.

physical log. Thus in this case too, w’ cannot occur between w and o. This
demonstrates the correctness of the concurrent update method.

We have shown how to implement logical writes in a way that permits physical
updates to be carried out concurrently with other operations, instead of having
to wait for updates to be acknowledged. The latency described in Section 4 does
not occur. In addition, concurrent update does not piggyback (possibly large)
updates on every synchronization message: only operation-ID’s are piggybacked
and operation-ID’s are small. Hence, the overhead resulting from this method is
low. Another advantage of transmitting updates concurrently is that physical
writes are spread out over a larger period of time than with piggybacked update,
where update instructions tend to arrive in bunches on synchronization messages.
This could lead to better utilization of local processing capability. Figure 5
illustrates the effect of using this approach on the computation of Figures 2 and
4. If, as in this figure, sufficient time elapses before the results of a write are
needed, no latency is incurred at all.

7. COMMITS, ABORTS AND FAILURES

In most database systems, a transaction terminates by executing a commut or an
abort operation. Any physical writes performed before a commit or an abort do
not cause a permanent change to the database; changes are effectively made to a
copy of the variables. A commit causes the changes to be made visible to other
transactions, while an abort leaves the database in a state that would have
resulted if the transaction had not executed at all. Commit and abort operations
can be included in our model by treating them as write operations on permanent
copies of the variables accessed by a transaction. A commit writes a new value,
while an abort writes the old one. A commit or an abort by a transaction conflicts
with a read of any of the variables it writes, and is serialized by the concurrency
control aigorithm in the same way as a write operation. The previous resuits
about concurrent update hence remain valid when commits and aborts are
included.

One reason for replicating data is to ensure availability in the presence of site
failures. In our model and in many others, all actions carried out at a site (e.g.,
physical writes, acquisition of locks) are lost if that site subsequently fails. When
a failed site recovers, it copies the necessary data from an operational site. Since
a failure resuits in a loss of information, many concurrency control algorithms

ACM Transactions on Computer Systams, Vol. 4, No. 1, February 1988

Low-Cost Management of Replicated Data . 65

(e.g., available copies (2]) handle failures by aborting any uncommitted transac-
tion that has executed a logical operation at a site that fails. The transaction
may then be restarted at another site. This form of recovery is often called roi-
back recovery.

It may appear that concurrent update could be incorrect in the presence of
failures because a piggybacked operation-ID could arrive at a site s en route to
site ¢, and be lost there if site s fails. However, if an operation is scheduled for
execution after a failure, there must be some path of synchronization messages
leading to it from any operation that it depended on, otherwise, the execution
would not be correct. The fact that operation-ID’s are piggybacked on ail
synchronization messages ensures that they will arrive at their destinations by
this path, even if operation-ID's along other message paths are lost.

Sometimes a commit is accompanied by an irreversible side effect, like dis-
pensing money from a machine. If a commit does not have such a side effect,
commit and abort instructions can be transmitted using concurrent update, in
the same way as update instructions. Then if a transaction is committed at a
site, and that site fails before performing the atomic broadcast of the commit
information, all local information pertaining to the transaction is lost and the
transaction is aborted at the other sites. The effect is as if the failure occurred
during the commit operation, leading to an abort. On the other hand, if a local
commit could have side effects that are not undone when a failure occurs, then
all sites must engage in a commit protocol [10], which ensures that if a local
commit occurs, then all sites commit. However, it is necessary to preserve the
order of the commit operation relative to concurrent updates. For this reason, a
flush must always be performed, that is, all outstanding updates must be broadcast
atomically, before a commit protocol is invoked. With this change, concurrent
update can be used in conjunction with a roil-back recovery method, such as the
one previously described. Note that a flush is necessary only for operations that
have irreversible side effects.

8. ROLL-FORWARD RECOVERY

Aborting transactions is just one way to recover from a site failure. Here we
outline a roll-forward scheme, detailed in (6], and discuss how concurrent update
can be used with it. In this scheme, a transaction is executed at more than one
site, one of which, the coordinator, supervises its execution. The coordinator
periodically takes checkpoints at the other sites, called its cohorts, by transmitting
its local state to them. Each cohort carries a copy of the operations that must be
performed as part of a transaction. Hence, a cohort can continue executing a
transaction from a checkpoint, should the coordinator fail.

When a site fails, the operational sites execute a fajlure protocol, similar to
the exclude transaction described in [2), during which they agree on the occur-
rence of the failure. They also agree on a relative time for the failure, effectively
serializing the failure decision with respect to other operations. Hence, a failure
decision appears in a physical log just as an operation on a data item. It is
scheduled after operations that have been completed before the failure, and all
other operations are scheduled after it. When the failure protocol ends, new

ACM Transactions on Computer Systems. Voi. ¢, No. 1, February 1986

66 . T. A. Joseph and K. P. Biman

coordinators are chosen for the transactions coordinated by the failed site, and
they resume execution from their last checkpoint. The recovery scheme ensures
that operations executed before a failure are not reexecuted, or if they are, they
have exactly the same effects as before. This scheme can tolerate as many failures
as there are cohorts. If more failures occur, we say that total failure has occurred,
and in this situation, a transaction must wait until a site has recovered (17].

Checkpoints are included in our model by treating the checkpointed state of a
transaction as a replicated data item, and the action of establishing a check-
point as a write operation on this data item. A checkpoint CKP has a data
flow dependency on all operations prior to it, and all operations subsequent
to it depend on it. Thus, O <r CKP for all prior operations O in transaction T,
and CKP <r O for all subsequent operations. For the purpose of the broad-
cast ordering rule, a checkpoint is considered to conflict with all write
operations in T.

For this recovery scheme to be correct, it is necessary that the serialization
order followed after a failure is the same as the one followed previously, because
the effects of partially executed transactions may not be valid if a different order
is followed. This requires that information pertaining to serialization decisions
(acquisitions of locks, etc.) be maintained redundantly. Since writes occur at all
copies of data items, replicating serialization information for write operations
(e.g. acquiring write locks on all copies) is acceptable, but replicating information
pertaining to read operations could make this scheme expensive.

How does concurrent update affect this recovery mechanism? Two aspects of
the recovery method make it expensive: the need to transmit checkpoint infor-
mation to cohorts and the need to replicate serialization information. When
concurrent update is used, checkpoints and serialization information can be
treated as replicated data items and can be updated concurrently. This makes a
seemingly inefficient recovery mechanism viable.

It remains to be shown that concurrent update does not alter the relative order
of dependent operations when a failure occurs. A logical operation carried out
before a failure is said to be known after the failure if it occurs at a site other
than the one that failed or if its atomic broadcast was completed before the
failure. Operations known after a failure are not reexecuted. It is possible, when
concurrent update is being used, for a logical write W to be performed at a site
that fails before AtBcast(W) is performed. In this case, W is not known after the
failure, and is reexecuted. We must show that this does not cause a change in
the order of dependent operations.

Let W and O be two operations executed before a failure, and let W write
before O. Let F represent the event corresponding to making the failure decision.
We then have W —, O —; F. If O is known after the failure, the properties of
atomic broadcasts and the broadcast ordering and blocking rules ensure that W
is also known after F. Hence, neither operation is reexecuted. If O is not known
but W is, then only O is reexecuted. Since W —, F and the reexecution of Ois
scheduled after the failure decision, it follows that W — O. If neither operation
is known after the failure, the normal recovery mechanism ensures that they are
both reexecuted in the correct order. Thus their relative order is preserved in all
cases.

ACM Transactions on Computer Systems, Vol. ¢, No. 1. February 1966

Low-Cost Management of Repiicated Data . 67

We have shown that concurrent update can be used in conjunction with a roll-
forward recovery scheme. Roll-forward recovery is inherently expensive and may
not be viable without techniques like concurrent update. Although we have
Presented a particular roll-forward recovery scheme, concurrent update can be
used with any roll-forward recovery scheme that satisfies the following properties:

(1) Recovery takes place from a previously saved state.

(2) Operations completed before the failure are not reexecuted (or, if they are,
the recovery scheme ensures that they have the same effects as the earljer
execution).

(3) Failure decisions are serialized with respect to other operations.

9. IMPLEMENTATION EXPERIENCE

This work is a consequence of research on the /SIS project at Cornell [3], which
aims to develop a system that aids in the automatic construction of fault tolerant
distributed software by replicating information. A prototype of the system has
been implemented on a cluster of SUN workstations, connected by a 10-Mbit
Ethernet. A simplified version of the method described in this paper was imple-
mented in /SIS, and has been operational since January 1985. One constraint
placed on the system architecture by the method is that the order in which
operations are executed at each site must respect the order in which update
instructions were received there. We were able to achieve this behavior without
much difficulty. Additionally, it was necessary to design a failure detection and
communication layer satisfying the fail-stop assumptions of Section 1.

The implementation differs slightly from the method as presented here. In this
paper, the blocking rule was used to delay the execution of an operation if the
required update had not arrived. In /SIS this can be dispensed with, for the
following reason: [SIS uses two-phase locking for concurrency control. Write
locks are acquired at all operational sites where a data item resides, while read
locks are acquired only locally. Locks are released when a transaction commits.
Thus if W writes before O, O cannot acquire a lock at a site until the transaction
that performed W is committed there. Since commit operations are ordered after
all writes in a transaction, a commit instruction will not arrive at a site unless
all prior updates have also arrived there. Thus O is automaticaily forced to wait
for an update that it depends on, and there is no need to piggyback operation-
ID’s or to have a blocking rule.

The /SIS implementation of concurrent update was compared with a synchro-
nous update algorithm. Detailed performance figures are given in (2]; we confine
ourselves to a summary here. Two performance measures are of interest. One,
the response time for a typical request, measures the time required to return the
result of an operation. We considered a fault-tolerant object implemented using
ISIS and distributed to 3 sites. A request that acquires a replicated write lock
updates a replicated data item and then responds to its caller, sends its reply
after about 0.6 seconds; additional updates delay the response by 0.1 seconds
each (the difference reflects the one-time cost of concurrency control). When
ISIS is run in a synchronous mode, verifying that each update has actually
completed before the coordinator undertakes any subsequent operations, such a

ACM Transactions on Computar Systems, Voi. 4, No. 1, February 1986

68 . T. A. Joseph and K. P. Biman

computation requires 1.5 seconds, with additional updates requiring 0.5 seconds
each. Moreover, the performance of the synchronous version degrades as the
number of cites increases, while the concurrent version gives the same perform-
ance regardless of the number of participating sites. Thus, the concurrent update
technique can have a substantial impact on performance.

If a high level of concurrency is achieved, a computation can remain active at
remote sites long after replying to the process that initiated it. A second perform-
ance measure can hence be studied: the total elapsed time between the issuing of
a request and the termination of an operation at all sites. In /SIS, we find that
the single update described above terminates after about 1 second, with subse-
quent updates delaying termination by about 0.3 seconds each, and with linear
degradation as the number of sites increases. It is important to recognize that
the delay to termination would not normally be an issue unless computations at
different sites compete for a lock, which does not occur frequently. Thus, for
ISIS and for many other applications, concurrent update permits extremely good
performance—almost as good as for a nondistributed system performing the
same operations—but with the advantages of replicated data and fault-tolerant
execution.

10. RELATED AND FUTURE WORK

In this paper, we have presented the concurrent update method with respect to
replicated database systems, where the operations are reads and writes. We have
further assumed that a read-one-copy, write-all-copies rule is being followed. In
[11], these assumptions are relaxed, and the method is extended to object-based
replicated systems, where the operations may be arbitrary operations on objects.
It is shown how concurrent update, used in this context, results in highly efficient
implementations of replicated objects.

We have found concurrent update so versatile and useful in the /SIS system
that we are reimplementing the communication subsystem to include a broadcast
primitive that performs concurrent update. A detailed description is given in (5].
We believe that a communication sub-system along those lines gives rise to
considerable simplicity and efficiency in the design and implementation of
replicated fault-tolerant software systems.

Concurrent update reduces the latency arising from replicating data, hence the
performance of the concurrency control algorithm could become a critical factor
in some systems. In particular, if two-phase locking (with write locks obtained
at all copies) were used, and the granularity of locking is individual data items,
write locking would require a message to each copy to request a lock and a delay
until locks are granted. As a result, concurrent update might not significantly
improve system performance. In (7], we present a concurrency control algorithm
that exploits available concurrency to a greater degree than conventional meth-
ods. This method is not presently being used in /SIS, but we expect methods
such as this to further improve performance.

Decoupling the transmission of updates from synchronization messages gives
rise to a degree of freedom for optimizing performance that is not available in
current systems. A message scheduler can be used to delay update instructions
until network load diminishes, or to bundle more than one update into one

ACM Transactions on Computer Systems, Vol. 4, No. 1, February 1986

Low-Cost Management of Repiicated Data - g9

message. Delaying updates, however, could cause operations to block unneces-
sarily. Performing a broadcast after every write distributes information as soon
as possible, but increases message traffic. The optimal degree of delay depends
on the relative costs of message transmission and response time, on the charac-
teristics of the message transmission system, and on the degree to which trans-
actions interact with one another. Constructing a message scheduler that balances
these factors is an area for future research.

The concurrent update method respects the order <r on the operations of a
transaction T. It is possibie to perform transformations on the specification of a
transaction, reordering these operations in a way that might lead to more efficient
transmission of updates. We are investigating the use of methods from data flow
analysis in this connection [9].

11. CONCLUSIONS

We have described a technique to reduce the overhead introduced when updates
have to be made on data that are replicated in a distributed system. By relaxing
the level of synchronization employed to maintain the consistency of replicated
data, the time required to carry out operations is decreased. At the same time,
the method does not violate the consistency of the data. We have presented the
technique with respect to replicated database systems, but it can be applied to
asynchronous distributed systems in which data are replicated for availability or
fault tolerance. It demonstrates that such replication can be supported without
additional latency when operations are performed. In fact, if & transaction is
executed at a site holding a copy of all the data items on which it operates,
concurrent update might allow it to execute as fast as if replication were not in
use. Replicated systems are inherently expensive, and techniques such as this are
necessary if they are to provide adequate performance.

ACKNOWLEDGMENTS

We would like to acknowledge the contributions of Dale Skeen and Fred Schnei-
der, who read earlier versions of this paper and provided helpful suggestions. Our
thanks also go to the referees, whose many detailed comments have greatly
improved the presentation of this work.

REFERENCES

L. BERNSTEIN P. AND GOODMAN, N. Concurrency control in distributed database systems. ACM
Comput. Surv. 13, 2 (June 1961), 188-222.

2. BERNSTEIN P. AND GOODMAN, N. The failure and recovery problem for distributed databases.
In Proceedings of the 2nd Symposium on Principles of Distributed Computing (Montreal, Canada,
Aug.), ACM, New York 1983, 114-122

3. BirMaN, K. Replication and fault-tolerance in the /SIS system. In The [0th ACM Symposium
on Operating Systems Principies (Orcas Island, Wash., Dec. 1-4) 1985. To be published.

4. BIrMAN, K., DiToics, W., EL AssADL, A., JOSEPH, T. AND RARUCHLE, R. An overview of the
ISIS project. Tech. Rep. TR 84-642, Department of Computer Science, Cornell University,
[thaca, NY. Oct. 1984.

5. BIRMAN, K., JosEPH. T., AND SkEeN, D. Raliable communication in an unrelisble environment.
Tech. Rep. TR 85-694. Department of Computer Science, Cornell University, [thaca, NY. Aug.
1985.

ACM Transsstions on Computer Systema, Vol. 4, No. 1, February 1966

70

10.

11

12.

13.

14.

15.

16.

17.

. T. A. Joseph and K. P. Birman

. BiRMAN, K., JOSEPH, T., RAEUCHLE, R., AND EL ABBADI, A. Implementing Fault-Tolerant

Distributed Objects. /[EEE Trans. Softw. Eng. 11, 6 (June 1985) 502-508.

. BIRMAN, K., JOSEPH. T. AND RAEUCHLE, T. Extending resilient object types efficiently. The

2nd GI/NTG GMI Conference on Fauit-Tolerant Computing Systems. (Bonn, West Germany),
Sept. 1984. Springer-Verlag.

. CHANG, J. AND MAXEMCHUK, N. Reliable broadcast protocols. ACM Trans. Comput. Syst. 2.3

(Aug. 1984), 251-273.

. FISHER. J. A., ELLIS, J. R., RUTTENBERG, J. AND NiCOLAU, A. Parallel processing: A smart

compiler for a dumb machine, Tech. Rep. Department of Computer Science, Yale University,
June 1984, :

GRAY, J. Notes on Database Operating Systems. Lecture Notes in Computer Science 60,
Springer-Verlag, New York 1978.

JoSEPH, T. Low cost management of replicated data. Department of Computer Science, Corneil
University, Ph.D. dissertation. Jan. 1986.

KOHLER, W. A survey of techniques for synchronization and recovery in decentralized computer
systems. ACM Comput. Sury. 13, 2 (June 1981), 149-184.

LAMPORT, L. Time, ciocks, and the ordering of events in a distributed system. Commun. ACM
21, 7 (July 1978), 95-114.

PaPADIMITRIOU, C. H. The serializability of concurrent database updates. /. ACM 26, (Oct.
1979), 631-653.

SCHLICHTING, R. D. AND SCHNEIDER, F. B. Fail-Stop processors: An approach to designing
fault-tolerant computing systems. ACM Trans. Comput. Syst. I, 3 (Aug. 1983), 222-238.
SCHNEIDER, F., GRIES, D. AND SCHLICTING, R. “Fault-tolerant broedcast. Sci. Comput. Pro-
gram. 4, 1984, 1-185.

SKEEN, D. Determining the last process to fail. ACM Trans. Comput. Syst. 3, (Feb. 1985),
15-30.

Received November 1984; revised August 1985; accepted September 1985

ACM Transactions on Computer Systems, Vol. 4, No. |, February 1986

nclosed is a copy of a technical report produced by the ISIS
group. This report was produced under contract number NAG2-593.

Respectfully yours,

Susan Allen,
ISIS Project Secretary
(607) 255-9198

